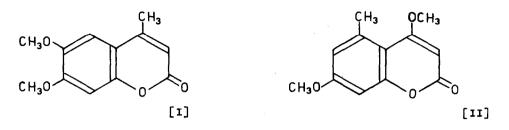
REVISED STRUCTURE FOR SIDERIN

P.Venturella, A.Bellino and F.Piozzi Institute of Organic Chemistry, University of Palermo 20, Via Archirafi - 90123 Palermo - Italy

(Received in UK 30 January 1974; accepted for publication 8 February 1974)

Some years ago, during a search for diterpenes on <u>Sideritis romana</u> L. (Labiatae), we extracted a very small amount (5 mg) of a $C_{12}H_{12}O_4$ product, m.p. 194-195°, that on the basis of MS, IR, UV and NMR data was tentatively regarded as a methyl-dimethoxy-coumarin. As the compound was available in too little amount for any chemical degradation to be performed, its study had been abandoned.


Recently, Gonzàlez <u>et al</u>. (¹) reported the isolation from <u>Sideritis cana-</u> <u>riensis</u> Ait. of a product, whose physical and spectroscopic data were identical to those of our substance. From the interpretation of the spectra they attributed it the structure [I] of 4-methyl-6,7-dimethoxy-coumarin, and named the substance siderin, regarding it as a new natural coumarin.

As we pointed out in a preliminary note $\binom{2}{}$, structure [I] is clearly untenable for siderin. In fact, the authentic 4-methyl-6,7-dimethoxy-coumarin [I] has been well known since 1911 ($^{3-6}$) and is also listed in Beilstein's Handbuch (7): it has m.p. 136-137°, as we checked on a synthetic sample (8). Moreover, synthetic [I] differs from siderin in the NMR spectrum, see Table: the most striking difference is the occurrence of an allylic coupling (J 0.8 Hz) between H-3 and the methyl group, that is totally missing in siderin (9).

A reinvestigation of the NMR spectrum of siderin (see Table) casts a serious doubt on the occurrence of the <u>para</u> coupling suggested by Gonzàlez (¹): the slightly broadened signal for the two aromatic protons does not rule out a <u>meta</u> coupling, as it was observed on other similar coumarins (¹⁰). Moreover, H-3 is usually reported to resonate at 6.05-6.28 δ when a methyl group is present on C-4 (^{9,11,12}), whereas it resonates at 5.56 δ when a methoxy group is on C-4 (¹³). Furthermore, a signal for H-5 should appear at a field lower than those of the other aromatic protons, i.e. in the 7.28-7.39 δ range (¹²) or even at 7.71 δ (¹³): but such a signal is clearly missing in siderin.

These remarks led to the following hypotheses: occurrence of OCH, instead

of CH_3 on C-4, and presence of the other substituents on C-5 and C-7. Also on the basis of biogenetical grounds, we took in consideration the structure [II] of 4,7-dimethoxy-5-methyl-coumarin for siderin.

The synthesis of [II] was performed as follows. Orcinol (3.1 g), malonic acid (2.6 g), anhydrous ZnCl_2 (10.2 g) and POCl_3 (6.85 ml) were heated at 65° for 36 hr with stirring (¹⁴). Decomposition with ice water gave 4,7-dihydroxy--5-methyl-coumarin (¹⁵), which was dissolved in aqueous Na_2CO_3 and precipitated with acids: m.p. 265-267° (from ethanol), yield 50%. UV (ethanol): λ_{max} 318 nm (sh, log ξ 4.18), 308 (4.24), 290 (sh, 4.15), 234 (sh, 4.13), 218 (4.30). NMR (60 MHz, DMSO-d_6): 2.56 δ (s, Ar-CH₃), 5.31 δ (s, H-3), 6.48 δ (broad s, H-6 and H-8), 10.3 and 12 δ (broad, 2 OH).

The above coumarin (0.5 g) dissolved in acetone was treated with K_2CO_3 (2g) and $(CH_3)_2SO_4$ (0.5 g) at reflux for 2 hr. Dilution with water gave a precipitate of 4,7-dimethoxy-5-methyl-coumarin, m.p. 194-195° (from methanol), yield 90%. UV (ethanol): λ_{max} 314 nm (sh, log ξ 4.05), 305 (4.12), 288 (sh, 4.03), 232 (sh, 4.04), 219 (4.25). NMR (60 MHz, CDCl₃): see Table. UV, IR and NMR spectra are superimposable with those of our natural siderin; m.m.p. does not depress.

	T	able		
	Ar-CH3	2 0-CH3	H-3	2 Ar-H
siderin (<u>S.canariensis</u>)	2.65	3.88 and 3.98	5.64	6.76
siderin (<u>S.romana</u>)	2.60	3.84 and 3.94	5.53	6.64
synthetic [I]	2.42*	3.92	6.15**	6.80 and 6.92
synthetic [II]	2.60	3.84 and 3.94	5.53	6.64
	* d, J 0.8 Hz		** q, J 0.8 Hz	

The data of synthetic [II] are in good agreement with those reported for siderin $(^{1})$: the small difference in δ values might be attributed to the use of different spectrometers. Hence, the structure of siderin is revised to 4,7-dimethoxy-5-methyl-coumarin, which is a real new natural product.

References and footnotes.

- (¹) A.G.Gonzàlez, B.M.Fraga, M.G.Hernàndez and J.G.Luis, Phytochem. <u>11</u> 2115 (1972).
- (²) P.Venturella, A.Bellino and F.Piozzi, Atti Accad.Sc.Lett.Arti Palermo [IV] 32 I 35 (1973).
- (³) G.Bargellini and E.Martegiani, Gazz.Chim.Ital. <u>41</u> II 612 (1911).
- (⁴) R.J.Parikh and S.Sethna, J.Indian Chem.Soc. <u>27</u> 369 (1950); Chem.Abstr. <u>45</u> 6631 (1951).
- (⁵) R.D.Desai and J.V.Parghi, J.Indian Chem.Soc. <u>33</u> 483 (1956); Chem.Abstr. <u>51</u> 6620 (1957).
- (⁶) E.Cingolani, Gazz.Chim.Ital. <u>84</u> 825 (1954).
- (⁷) Beilstein's Handbuch, vol. XVIII, Suppl. I, 351.
- $\binom{8}{}$ Prepared according to $\binom{3}{}$.
- (⁹) K.D.Kaufman, J.F.W.Keana, R.C.Kelly, D.W.McBride and G.Slomp, J.Org.Chem. 27 2567 (1962).
- (¹⁰) G.Büchi, D.M.Foulkes, M.Kurano, G.F.Mitchell and R.S.Schneider, J.Am.Chem. Soc. 89 6745 (1967).
- (¹¹) S.K.Jain, O.P.Aggarwal, U.S.Mahnot and R.L.Mital, Monatsh. <u>101</u> 1052 (1970).
- (¹²) R.Grigg, J.A.Knight and P.Roffey, Tetrahedron <u>22</u> 3301 (1966).
- (¹³) G.Büchi, D.H.Klaubert, R.C.Shank, S.M.Weinreb and G.N.Wogan, J.Org.Chem. <u>36</u> 1143 (1971).
- (¹⁴) General procedure of V.R.Shah, J.L.Bose and R.C.Shah, J.Org.Chem. <u>25</u> 677 (1960).
- (¹⁵) This product was recently quoted by L.Simonova and A.Shamshurin, Chem. Abstr. <u>78</u> 4072 h (1973), but no physical data were reported.